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1.1 Abstract 

Several alternatives are used to connect prefabricated bridge deck elements using closure 

joints but cost and construction considerations limit their use in field applications. In this research, 

a new detail is proposed to efficiently connect these elements in closure joints. The new detail 

consists of 90° hooked reinforcement and normal strength concrete in the closure joint. An 

experimental program was conducted to develop design criteria for the suggested detail. 48 

specimens were tested to study the effect of lap splice length, the lateral distance between 

transverse reinforcement, and bar size. The specimens were tested in flexure and were compared 

with control specimens. The objective of the experiment was to obtain optimal lap splice length 

based on modes of failure and ductility ratio . Test results have shown that the longitudinal 

connection detailed with hooked bars can be a viable alternative for the design and construction of 

closure joints. This report provides a summary of experimental tests on the new closure joint detail 

and tentative design recommendations. 

1.2 Introduction 

A major portion of the bridge infrastructures in the United States is approaching their 

design life and consequently needs replacement or repair. Many of these bridges are located in 

crowded roadways, and closure of these bridges for an extended period of time is not feasible . In 

order to minimize traffic disruptions, the bridge can be temporarily closed while performing 

construction activities using accelerated bridge construction (ABC) techniques. Minimizing 

construction time and activities performed in the field not only decrease detour time and traffic 

jams but also increase safety for workers, vehicles, and the traveling public. One of the most 

commonly used ABC methodology involves modular bridge systems which consist of precast 

girder/slab elements. These precast elements are placed on supports and connected to each other 
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using cast-in-place closure joints. Since these modular sections have a pre-topped deck tributary 

area, extensive forming and scaffolding are eliminated. 

In modular bridge superstructure, the shear and moment are transferred through the 

longitudinal deck joints which run parallel to traffic direction. These joints are functionally 

required to connect one modular unit to the adjacent units, however, the performance of these 

joints can be affected by environmental attacks and structural degradations [1]. Durability issues 

have been encountered in these longitudinal joints with the use of welded steel connectors. In 

addition, cracking has been observed in bridge overlays of prestressed concrete bridges. These 

cracks are continuous along the length of the bridges and are prone to deterioration of both 

superstructure and substructure. A leaking crack can be a potential hazard for vehicular traffic on 

bridges with highway underpasses [1] ,[2]. The water leaking through the deck causes serious 

issues such as corroding deck reinforcement, concrete spalling and expansion due to water freezing 

and corroding cross-frames if water leaked through the full deck depth. Water leaking is not 

causing such traffic hazards as it is a serviceability issue. 

In order to control deck cracking, several researchers proposed usmg distributed 

reinforcement [3] . The use of closely spaced reinforcing bar provides better stress distribution 

when compared to widely spaced reinforcing bars [ 4] . In addition, it is desirable to keep the joint 

width smaller to reduce cost and construction time. However, this reduction in joint width prevents 

the straight and hooked bars from satisfying AASHTO-LRFD development length requirements 

[5]. Therefore, special details including spiral wire, U-shaped bar, straight bar, and headed bar 

have been developed to meet these requirements as shown in Figure 1-1. 

One of the disadvantages ofusing spiral wire is difficulty in its fabrication, which increases 

the cost of installation [3]. ForU-shaped bar, AASHTO-LRFD section 5.10.2 (ACI 7.1 and 7.2) 

outlines bend diameter which requires the deck to have a thickness greater than 9.5 in [5] , [6]. 
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However, this value is typically less than 8.5 in. and thus U-shaped detail cannot be used. On the 

other hand, headed bars provide satisfactory structural performance but their limited availability, 

cost, and reduction in concrete cover at the bar head make them a less feasible option. 

Figure 1-1 Details of current options for splicing reinforcement in closure joints [7]. 

On the other hand, hooked bars offer benefits of easy fabrication and reasonable cost. In 

the past, many studies have been conducted on hooked bar anchorages in beam-column 

connections [8] ,[9] ,[10]. These studies were conducted on typical beam-column connections 

subjected to varying levels of confinement at the connections including side concrete cover, 

column axial load, longitudinal column reinforcement, and transverse reinforcement through the 

connection. The results showed spalling of concrete cover at hooked anchorage level was the main 

reason of failure [8]. It was also concluded that there is no significant difference between the 

capacity of 90° hooks and 180° hooks although the slippage at given stress was greater in the case 

of 180° hooks [8]. 

The pullout tests in typical beam-column connections were carried out on hooked bars with 

different straight lead embedment lengths, h, and design recommendations of embedment length, 

ldh of bars were suggested based on these results [9]. Test results concluded that the main factors 
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affecting the capacity of beam-column connections are the level of lateral confinement and 

embedment length [9]. Limitation values of ldh were provided based on test results in which the 

failure mode occurred by spalling of the concrete side cover. However, in the closure joint, the 

adjacent concrete provides large confinement to the hook and the spalling of concrete side cover 

rarely occurs. 

Testing was conducted on hooked bar anchorages with short embedment length (ldh ~ 

7db) and results showed that the failure mode occurred by the loss of concrete cover in front of 

the hook. This failure mode is different from typical pullout failure and side-splitting [10]. For the 

range of concrete strength considered, the capacity of hooked bar anchorage was proportional to 

m [10]. 

Many studies have been conducted on tension development length of reinforcing bars in 

high strength concrete [11] ,[12] ,[13] ,[14]. The results of these experimental studies showed that 

both tension splice length can be designed to prevent brittle failure if a minimum amount ofstirrups 

are provided over the splice region [ 11]. This minimum amount of stirrups can be calculated by an 

expression given in the literature [ 12] . The recommendations provided in ACI 318-95 for concrete 

strengths above 10,000 psi were made to ensure sufficient ductility and bond which improve the 

overall performance of the spliced reinforcement. The lap splice capacity is not increased with any 

further increase in development length [ 13]. 

Other recommendations include a 20% increase in ldh value for the anchorage strength in 

the case of epoxy coated hooked bars [ 15] . Also, based on a strut and tie model, recommendations 

were made on the development length of standard hook anchorage with high strength corrosion 

resistant reinforcement [ 16]. 

A 90° hook in a reinforced concrete joint need to meet AASHTO-LRFD requirements . To 

develop a bar in concrete, the AASHTO-LRFD code specifies a length of tail extension of 12db 
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for a 90° hook [5]. Previous studies were used as bases for AASHTO-LRFD and ACI requirement 

and have shown that the bend portion of the hooks can pop out when either short length of hook 

or smaller concrete cover are used [8] ,[9] ,[10]. However, this scenario is not common in closure 

joint regions where large confinement is provided by the adjacent concrete. 

1.3 Objectives 

Although the hooked bars have been used extensively in different applications, their use in 

closure joints is limited due to lack of experimental data. The objective of this research is focused 

on studying a hooked detail in the closure joint region through experimentation. To understand the 

mechanism of development of 90° degree hooks, a detailed experimental program was conducted 

by incorporating different parameters such as bar size, lap splice length, the lateral distance 

between reinforcement, and transverse reinforcement. The experimental research incorporating 

these parameters will fill the gaps in the existing studies and will provide additional details that 

will help to understand the mechanism of failure in closure joints. This mechanism will be used 

for revising existing design provisions and possible incorporation of 90° hooked details in 

construction applications. This report summarizes the results of an experimental study which was 

conducted to formulate a design procedure for calculating tension development length and tension 

lap splice length when the hooked bar is used in closure joints in ABC projects. 

The performance of the proposed 90° hooks meets structural requirements and can be 

practically implemented in field construction. 

1.4 Current Details for Closure Joint 

The use of girders with prefabricated deck panels is one of the most commonly used ABC 

methods for construction of bridge superstructure. These standalone prefabricated units are 

deployed on site and then connected to the other adjacent units using different closure joints. 
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One of the possible methods of connecting separate units is the use of straight lap bars in 

closure joints. However, straight lap bars require wider closure joints to develop sufficient 

development length based on the AASHTO-LRFD design specifications [5]. The other issue with 

straight lap bars in wide closure joint is the shrinkage cracking. Alternatively, headed bars are used 

which are currently in practice for construction of modular bridge systems. NCHRP 12-69 

recommends using of headed bars for easier construction practices [ 17]. Among the many 

shortcomings of headed bars which may cause service life issues, the primary concern is the 

increased size of the head at the end, which can cause issues of reducing concrete cover. The 

headed bars require careful detailing to avoid interfering with adjacent headed bars during 

placement of two modular units as shown in Figure 1-2 [18]. In addition, the cost of headed bars 

is relatively higher. 

Another common option to reduce the closure joint width is the use of Ultra-High 

Performance Concrete (UHPC) between the modular deck units . This material offers high 

compressive strength, high tensile strength compared to normal strength concrete, and low 

permeable solution to join the prefabricated elements. The higher tensile strength of this material 

makes it possible to provide adequate strength over short lap splice length [19]. However, the 

higher cost of this material compared to other available concrete mixtures limits its widespread 

use. 

Lastly, the 180° hooked bars provide detailing of closure joint, which are economical and 

constructible. The 180° hooked detail provides a solution to the concrete cover problem 

experienced with headed bars. However, this detail limits the designers to use the same 

reinforcement size for the top and bottom layers, which is in some cases not the situation for bridge 

decks [18]. Moreover, meeting the bent bar requirements as outlined in AASHTO-LRFD section 
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5.10.2 (Section 7.1 and Section 7.2 of the ACB 18-08) [5] ,[6] causes the deck thickness to be 

greater than 9.5 in., which is a function of girder spacing which is typically less than 8.5 in. 

To overcome the shortcomings of the existing details, a new connection detail is proposed 

in this research by using 90° hooked bars which overcome the concrete cover issue associated with 

head bars, deck thickness issue associated with 180° hooked bars, and the wide closure joint in 

case of the use of straight bars. The new detail should be designed for adequate structural 

performance and service life for ABC applications. 

Figure 1-2 Details of headed bar splicing reinforcement in closure joints [7]. 

1.5 Description of the Proposed ABC Connection 

In the proposed closure joint, normal strength concrete along with 90° degree hooked bar 

is used to connect the pre-topped deck elements in the ABC application. As a part of the research 

performed by the University of Tennessee, Knoxville a survey was sent to various bridge 

professionals to determine concerns with current bar details. The primary concerns were the 

overall width of the closure joint and constructability of each of the details [18] ,[20]. In order to 

reduce the closure joint width and to achieve better constructability, hooked bars are commonly 

used. The objective of the proposed new detail in this study is to investigate the performance of 
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90° hooked bars in closure joint. The hooked bars may be obtained from any local steel fabricator 

which greatly reducing the time and cost of fabrication and shipment to the work site. AASHTO 

specifies the face of closure joint to be roughened or have shear keys to ensure a proper bond and 

shear strength between segments [21 ],[22]. However, the worst-case scenario is when no surface 

preparation is conducted on adjacent segments which leads to a weaker shear interface due to face 

smoothness. Based on this assumption, details of the proposed specimens were designed using a 

smooth interface, as shown in Figure 1-3 . The test specimens are designed for unit width of the 

deck in the transverse direction where moments are transferred through closure joint. The thickness 

of the slab was chosen to be 8 in. for all specimens, which is a typical thickness for bridge decks. 

The gap space in Figure 1-3 represents the transverse spacing of noncontact splices, which is 

limited by the smallest value of one-fifth oflap splice length or 6.0 in. [23]. For this reason, a gap 

space of 2.0 in. and 4.0 in. are considered as lower and upper limits, respectively. The empirical 

design of deck typically uses No. 4 bar, but No. 6 bar was also considered as an upper limit. To 

investigate the optimal lap splice length, a spliced length of 2-in. to 10-in. was considered with a 

2-in. increment. 
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Figure 1-3 Details of hooked bar in the proposed connection (elevation view and section). 

The main advantage of the new details includes a reduction in closure joint width. The 

main advantage of a narrower closure joint is the reduction in shrinkage cracking. The hooked bar 

can be developed within the deck thickness over a shorter length. Also, the hooked bars have a 

comparatively lower fabrication cost and their ease of construction saves time which agrees with 

the ABC goals. 

1.6 Experimental Program 

To evaluate the structural performance ofthe proposed closure joint detail, an experimental 

program was conducted at Florida International University (FIU). Based on the test program, the 

experiments were conducted in three phases. Each phase was investigated for different parameters, 
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including lap splice (Lp) length, the lateral distance between hooked bars (Gap Space (GS)) and 

the use of transverse bar (TR) (each variable is defined in Figure 1-3). In this detail, lap splice (Lp) 

was measured from outside to outside of hooked bars as shown in Figure 1-3 . To meet the 

requirement of the AASHTO-LRFD Bridge Design Specifications [22] for the confinement of 

hooks, the side cover is considered as 2 in. For each bar size, the range of Lp is incrementally 

varied from 2 in. to 10 in. with 2-in. increment. For bar size (BS), No. 4 and No. 6 are considered 

which are commonly used in bridge decks. Each group consists of 12 beams with a length of 8 ft. 

and a depth of 8 in. The design procedure for the design of modular bridge deck is similar to a 

conventional cast-in-place decks based on the AASHTO-LRFD Bridge Design Specifications 

[22]. The specimens were tested in a reverse test setup where the tension side was located at the 

top of the specimens due to some limitations in test setups. Figure 1-4 shows an elevation view of 

the reversed test setup. 

Figure 1-4 Specimen geometry, reinforcement, and reversed test setup. 

During the first phase, hereafter, indicated by Group A, 12 test specimens were constructed 

with different lap splices (2 in. ~ Lp ~ 10 in.) with 2-in. increment. The bar sizes for lap splice 

were No. 4 and No. 6 with a constant gap space of 2 in. In the second phase, hereafter, indicated 

by Group B, another 12 specimens were constructed with the details identical to Group A, except 
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for a gap of4-in. between the longitudinal hooked bar in the closure joints region. Finally, Groups 

C and D test specimens were constructed with details identical to Groups A and B, with additional 

transverse reinforcement which is not used in Groups A and B. These transverse bars consisting 

of No. 3 bars at a spacing of 2.5 in. were placed over the hooked bars in the closure joint. This 

transverse reinforcement represents longitudinal reinforcement that is usually placed in the 

longitudinal closure joints. All the test specimens designated as S/ST-GS-BS-Lp 

where: S is a notation for the specimens without transverse bars; 

ST is a notation for the specimens with transverse bars in closure region; 

GS is a notation for the lateral distance between the hooked bars (Gap Space) in inches; 

BS is a notation for bar size in terms of bar number; and 

Lp is a notation for lap splice length in inches. 

For instance, S-2-4-2 specifies the specimen with no transverse reinforcement within closure joint, 

with a 2-in. lateral distance between the hooked bars, No. 4 bar size, and 2-in. lap splice length. 

Table 1-1 shows the specimen matrix details. 

Table 1-1 Specimen Matrix, Unit: in. 
Group ID GS (in.) Bar Size Lp (in.) Transverse Bar Joint Width (in.) 

A 

S-2-4-2 2 #4 2 NO 6 
S-2-4-4 2 #4 4 NO 8 
S-2-4-6 2 #4 6 NO 10 
S-2-4-8 2 #4 8 NO 12 
S-2-4-10 2 #4 10 NO 14 
S-2-6-2 2 #6 2 NO 6 
S-2-6-4 2 #6 4 NO 8 
S-2-6-6 2 #6 6 NO 10 
S-2-6-8 2 #6 8 NO 12 
S-2-6-10 2 #6 10 NO 14 

S-2-4-control 2 #4 Control NO NIA 
S-2-6-control 2 #6 Control NO NIA 
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Cont. Table 1-1 

B 

S-4-4-2 4 #4 2 NO 6 
S-4-4-4 4 #4 4 NO 8 
S-4-4-6 4 #4 6 NO 10 
S-4-4-8 4 #4 8 NO 12 
S-4-4-10 4 #4 10 NO 14 
S-4-6-2 4 #6 2 NO 6 
S-4-6-4 4 #6 4 NO 8 
S-4-6-6 4 #6 6 NO 10 
S-4-6-8 4 #6 8 NO 12 
S-4-6-10 4 #6 10 NO 14 

S-4-4-control 4 #4 Control NO NIA 
S-4-6-control 4 #6 Control NO NIA 

C 

ST-2-4-2 2 #4 2 #3 6 
ST-2-4-4 2 #4 4 #3 8 
ST-2-4-6 2 #4 6 #3 10 
ST-2-4-8 2 #4 8 #3 12 

ST-2-4-10 2 #4 10 #3 14 
ST-2-6-2 2 #6 2 #3 6 
ST-2-6-4 2 #6 4 #3 8 
ST-2-6-6 2 #6 6 #3 10 
ST-2-6-8 2 #6 8 #3 12 

ST-2-6-10 2 #6 10 #3 14 
ST-2-4-control 2 #4 Control #3 NIA 
ST-2-6-control 2 #6 Control #3 NIA 

D 

ST-4-4-2 4 #4 2 #3 6 
ST-4-4-4 4 #4 4 #3 8 
ST-4-4-6 4 #4 6 #3 10 
ST-4-4-8 4 #4 8 #3 12 
ST-4-4-10 4 #4 10 #3 14 
ST-4-6-2 4 #6 2 #3 6 
ST-4-6-4 4 #6 4 #3 8 
ST-4-6-6 4 #6 6 #3 10 
ST-4-6-8 4 #6 8 #3 12 
ST-4-6-10 4 #6 10 #3 14 

ST-4-4-control 4 #4 Control #3 NIA 
ST-4-6-control 4 #6 Control #3 NIA 

1.7 Construction of Test Specimens 

The structural performance of a closure joint was replicated under a flexure test for a unit 

width. The closure joint was cast in two stages. During the first stage, the adjoining decks were 

cast in a formwork separated by a closure joint. Upon the completion of curing for a minimum of 

28 days, the closure joint was cast. The concrete used for both the slab and closure joint had a 
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compressive strength of a minimum of 5 ksi (FDOT CL II deck concrete). Before casting of the 

closure joints, no surface preparation was done on cast deck portion. This condition represents the 

most unfavorable condition of a cold joint. In addition to the test group specimens, control 

specimens of monolithic construction were made. These control specimens replicate the cast-in-

place slab of conventional bridges that have no closure joints and contain straight bars. The test 

specimens were painted in white to document crack initiation and propagation during the test. 

Construction procedure oftest specimens is shown in Figure 1-5. 

Figure 1-5 Specimen construction procedure a) formwork, b) casting deck portions, c) spliced hooked bars in 
closure joint, d) casting closure joint, e) final test setup. 

1.8 Test Setup and Loading Procedure 

The test specimens were tested under a four-point loading setup as the main scope of this 

study is to investigate the flexural behavior and lap splice length requirement. A displacement 

controlled monotonic loading was applied to determine the moment capacity of the closure joints. 

The distance between the hydraulic jacks was 6 ft. and the roller supports were spaced at 3 ft. apart 
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as shown in Figure 1-6 (actual test setup) and Figure 1-7 (schematic test setup). The hydraulic 

jacks were reacted against a spreader beam, which was anchored to the lab strong floor. To evaluate 

the behavior of the specimens, the test setup was instrumented with string potentiometers, load 

cells, and pressure transducers. Each specimen was loaded to failure. The deflection was measured 

at the mid of the slab and loading points. 

Figure 1-6 Actual experimental test setup. 

+-------6' ------+ 

---3' ---

8" I 

-------- 8' ___________. 

Figure 1-7 Schematic experimental test setup. 
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1.9 Material Tests 

Cylinder test of 4x8 m. based on ASTM C39/C39M [24] specification was used to 

determine the compressive strength of normal concrete at test days as shown in Figure 1-8. The 

compressive strength of conventional concrete for the slab and closure joint regions are 

summarized in Table 1-2 . All compressive strength values passed 5,000 psi as required. 

ASTM A615 Grade 60, No. 3, No. 4, and No. 6 steel reinforcing bars were used for 

longitudinal reinforcement in all specimens and transverse bars for specimens in groups C and D . 

Four segments of each bar were used for tensile testing as shown in Figure 1-9. The resulting 

values of yield and ultimate strength are mentioned in Error! Reference source not found.1-3. 

Table 1-2 Compressive Strength of Outer Sections of Slab Specimens 

Region Sample # Compressive Strength (psi) 
Slab 1 7744 

2 6230 
3 7794 
4 7189 
5 6080 
6 6974 
7 6852 
8 6021 

Average 6860 
Closure joint 1 6692 

2 6273 
3 6130 
4 6127 
5 6772 
6 6525 

Average 6420 

Table 1-3 Bar Test Strengths 

Test Specimen Yield Strength (psi) Ultimate Strength (psi) 

Straight/Hooked No. 4 64,500 103,800 

Straight/Hooked No. 6 68,000 113,000 

Straight No. 3 61,700 100,100 
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Figure 1-8 Cylinder test. 

Figure 1-9 Reinforcing bar test. 
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1.10 Experimental Result 

1.10.1 Mode of Failure and Crack Pattern 

Resistance against pull-out of deformed reinforcing bars embedded in concrete is mainly 

provided by bearing of ribs against concrete. Although adhesion and friction are present when a 

deformed bar is loaded, these bond-transfer mechanisms are quickly lost, leaving the bond to be 

transferred by bearing on the deformations of the bar [12]. For most structural members, bond 

failure is governed by concrete splitting. 

The mode offailure for a closure joint with an inadequate splice length occurs at the closure 

joint region. by increasing the applied load, the force is transferred to the closure joint and concrete 

splits before the yielding occurs due to insufficient lap splice length, which is referred to as a bond 

failure as shown in Figure 1-10. However, for the flexure failure, the spliced bars reach their 

yielding, and the subsequent cracks are distributed along the tension zone. The flexure failure is a 

preferred mode of failure for the closure joints and implies that the splice length is sufficient for 

these specimens (Figure 1-11). The modes of failure for all test specimens are summarized in Table 

1-4. 

Figure 1-1 0 Bond failure . 
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Figure 1-11 Flexure failure. 

The specimens with No. 4 bar in Group A failed in flexure with the exception of the 

specimen with 2-in. lap splice length which is not surprising due to short lap splice length of only 

four times bars diameter for bar No. 4. 

For specimens with No. 6 in Group A, all failure modes were bond failure except for 

specimen with 10-in. lap splice length. This concluded that even eleven times the bar diameter of 

No. 6 is not sufficient to yield the spliced No. 6 bars. The specimens in Group B with No. 4 bars 

failed in flexure except 2-in. and 4-in. splice length. Since the only difference between Group A 

and Group B that specimens in Group B have bigger lateral distance between reinforcement which 

led to the need of at least twelve times bar diameter instead ofeight times bar diameter for the case 

of smaller lateral distance between reinforcement for bar No. 4 for specimens in Group A. 

For specimens with No. 6 bars in Group B failed in bond which concluded that increasing 

the lateral distance between the spliced bars caused that lap splice length to be insufficient even 

with over 13 times the bar size. 

The specimens with No. 4 bars in Group C failed in bond failure mode except 8-in. and 10-

in. splice length. For specimens with No. 6 bars in the same group, all specimens failed in bond 

failure mode except for specimens with 8 in and 10 in. splice length. The specimens with No. 4 in 
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Group D bars failed in bond except 10-in. splice length. For specimens with No. 6 bars in the same 

group, all specimens failed in bond. The reason Groups C and D failed in bond was due to a weak 

plane caused by the presence of transverse bars. The modes of failure for all test specimens are 

summarized in Table 1-4. 

Table 1-4 Test Specimens Modes of Failure 
Group ID Bar Size GS (in.) Lv (in.) Transverse Bar Mode of Failure 

A 

S-2-4-2 #4 2 2 NO Bond Failure 
S-2-4-4 #4 2 4 NO Flexural Failure 
S-2-4-6 #4 2 6 NO Flexural Failure 
S-2-4-8 #4 2 8 NO Flexural Failure 

S-2-4-lO #4 2 lO NO Flexural Failure 
S-2-4-control #4 NIA NIA NO Flexural Failure 

S-2-6-2 #6 2 2 NO Bond Failure 
S-2-6-4 #6 2 4 NO Bond Failure 
S-2-6-6 #6 2 6 NO Bond Failure 
S-2-6-8 #6 2 8 NO Bond Failure 

S-2-6-10 #6 2 lO NO Flexural Failure 
S-2-6-control #6 NIA NIA NO Flexural Failure 

B 

S-4-4-2 #4 4 2 NO Bond Failure 
S-4-4-4 #4 4 4 NO Bond Failure 
S-4-4-6 #4 4 6 NO Flexural Failure 
S-4-4-8 #4 4 8 NO Flexural Failure 

S-4-4-lO #4 4 lO NO Flexural Failure 
S-4-4-control #4 NIA NIA NO Flexural Failure 

S-4-6-2 #6 4 2 NO Bond Failure 
S-4-6-4 #6 4 4 NO Bond Failure 
S-4-6-6 #6 4 6 NO Bond Failure 
S-4-6-8 #6 4 8 NO Bond Failure 

S-4-6-lO #6 4 lO NO Bond Failure 
S-4-6-contro l #6 NIA NIA NO Flexural Failure 

C 

ST-2-4-2 #4 2 2 #3 Bond Failure 
ST-2-4-4 #4 2 4 #3 Bond Failure 
ST-2-4-6 #4 2 6 #3 Bond Failure 
ST-2-4-8 #4 2 8 #3 Flexural Failure 

ST-2-4-lO #4 2 lO #3 Flexural Failure 
ST-2-4-control #4 NIA NIA #3 Flexural Failure 

ST-2-6-2 #6 2 2 #3 Bond Failure 
ST-2-6-4 #6 2 4 #3 Bond Failure 
ST-2-6-6 #6 2 6 #3 Bond Failure 
ST-2-6-8 #6 2 8 #3 Flexural Failure 

ST-2-6-lO #6 2 lO #3 Flexural Failure 
ST-2-6-control #6 NIA NIA #3 Flexural Failure 
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Cont. Table 4-1 

D 

ST-4-4-2 #4 4 2 #3 Bond Failure 
ST-4-4-4 #4 4 4 #3 Bond Failure 
ST-4-4-6 #4 4 6 #3 Bond Failure 
ST-4-4-8 #4 4 8 #3 Bond Failure 

ST-4-4-10 #4 4 10 #3 Flexural Failure 
ST-4-4-control #4 NIA NIA #3 Flexural Failure 

ST-4-6-2 #6 4 2 #3 Bond Failure 
ST-4-6-4 #6 4 4 #3 Bond Failure 
ST-4-6-6 #6 4 6 #3 Bond Failure 
ST-4-6-8 #6 4 8 #3 Bond Failure 

ST-4-6-10 #6 4 10 #3 Bond Failure 
ST-4-6-control #6 NIA NIA #3 Flexural Failure 

Cracks were mapped during the tests on each specimen to observe the order of cracks 

formation. At the onset of longitudinal crack formation, the tests were stopped for safety concerns. 

All remaining cracks were mapped upon the completion of testing, as shown in Figure 1-12. 

Initiation of cracks with bond failure mode occurred at the cold joints and subsequent crack 

formation occurred over supports. 

Figure 1-1 2 Cracking pattern in closure joints region. 

1.10.2 Load-Displacement Relationship 

The comparisons of load-deflection curves for all groups are plotted from Figure 1-13 to 

Figure 1-16 with fixed horizontal and vertical axes . The test results show that the variables such 
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as the bar diameter, the lateral distance between reinforcement, and lap splice length have a 

significant influence on the load carrying capacity of specimens. 

In Group A, the deflection specimen with No. 4 bar increased with an increase of lap 

spliced length, while the maximum load carrying capacity of specimens remained the same which 

is due to better development length which led to better load transfer between the two adjacent deck 

segments. The test specimen S-2-4-2 exhibited the least displacement before the occurrence of 

bond failure . For lap splice increments from 2 to 8 in., No. 6 bar was insufficient for tension 

development length and bond failure occurred in these specimens. However, for lap splice length 

of 10-in., the failure mode was in flexural. Figure 1-13-b shows that the specimens with No. 6 bars 

with insufficient lap splice length failed before the bar yielding occurred. 

The lateral distance between the reinforcement (Gap Space) for specimens in Group B with 

No. 4 and No. 6 bars was increased from 2 in. to 4 in. The results show that increasing this gap 

space requires an increase of lap splice length, which is shown in Figure 1-14-a and Figure 1-14-

b. The 4-in. gap space for specimens with No. 6 bars was insufficient for all splice lengths and 

failed in bond. Figures 1-13 and 1-14 show that reducing the gap spacing and increasing the bar 

diameter can improve the ultimate load capacity of the specimens due to an increase in 

reinforcement ratio. 

Groups C and D have test parameters similar to Groups A and B but include transverse 

reinforcement in closure joint region. The test results of Groups C and D are presented in Figures 

1-15 and 1-16. General design practice requires the use of these transverse bars for thermal and 

shrinkage requirements. 

In Group C, the deflection specimen with No. 4 bar increased with an increase oflap spliced 

length, while the maximum load carrying capacity of specimens remained the same which is due 

to better development length which led to better load transfer between the two adjacent deck 
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segments. The test specimens ST-2-4-2 and ST-2-4-4 exhibited the least displacement before the 

occurrence ofbond failure . For lap splice increments from 2 to 6 in., No. 6 bar was insufficient for 

tension development length and bond failure occurred in these specimens. However, for lap splice 

lengths of 8-in. and 10-in., the failure mode was in flexural. Figure 1-15-b shows that the 

specimens with No. 6 bars with insufficient lap splice length failed before the bar yielding 

occurred. 

The lateral distance between the reinforcement (Gap Space) for specimens in Group D with 

No. 4 and No. 6 bars was increased from 2 in. to 4 in. The results show that increasing this gap 

space requires an increase of lap splice length, which is shown in Figure 1-16-a and Figure 1-16-

b. The 4-in. gap space for specimens with No. 6 bars was insufficient for all splice lengths and 

failed in bond. Figures 1-15 and 1-16 show that reducing the gap spacing and increasing the bar 

diameter can improve the ultimate load capacity of the specimens due to an increase in 

reinforcement ratio. 

Adding transverse reinforcement in the closure joints acts as ties for spliced bars ( due to their short 

length) to reduce cracks initiation and propagation, however, specimens in groups C and D failed 

in bond since the overall width of specimens were small, but in the case of large scale closure 

joints, this would not happen. 

14 14 
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10 10 
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Figure 1-1 3 Group A, Experimental load-displacement result a) Specimens with No. 4 bars and 2-in. gap, b) 
Specimens with No. 6 bars and 2-in. gap. 
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Figure 1-15 Group C, Experimental load-displacement result a) Specimens with No. 4 bars and 2-in. gap, b) 
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Figure 1-14 Group B, Experimental load-displacement result a) Specimens with No. 4 bars and 4-in. gap, b) 
Specimens with No. 6 bars and 4-in. gap. 
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1.10.3 Measured Ductility 

Since the behavior of the concrete beams is not perfectly elastic-plastic, the ductility 

parameters (~y and ~max) were obtained from the idealization load-displacement curve. The 

idealized curve consists of two regions: linear elastic and plastic. The yield displacement (~y) was 

calculated based on initial stiffness and maximum load applied as shown in Figure 1-17. 

Displacement ductility capacity (µ) of a member cab be calculated using the following equation: 

Llmax (1-1) 
µ=--

Ll y 

Where; 

~y: Idealized elastic displacement of the tested beam 

~max: the maximum displacement of the tested beam 

Considering the described equation above, the ductility of the specimens related to lap 

splice length is plotted in Figures 1-18 and 1-19. The presence of transverse reinforcement in 

closure joint improves displacement ductility and the tension development is possible with shorter 

spliced length. Based on the test results, it is concluded that a certain level ofdisplacement ductility 

and load carrying capacity is needed for bar development length. These limits control the design 

of lap splice length for hooked bar and failure by either flexure or bond is of secondary importance. 
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1.11 Tentative Design Recommendations 

The performance of a tension splice is considered similar to that of an identical component 

in which the reinforcing bars are continuous. Thus, to comply with general ACI design philosophy 

due to the lack of the same requirement in AASHTO-LRFD, the members with tension splice 

should exhibit some level of ductility. The ACI requirement specifying 1.25fy (section 12.14) 

provides insufficient knowledge of the level of ductility ( curvature of displacement) in a member 

with tension splice. Therefore, in order to develop design criteria, strength and ductility criteria 

should be incorporated. The displacement ductility ratio, described in the previous section, was 

used to express the ductility criteria. A displacement ductility ratio greater than one signifies: 

firstly, those longitudinal bars are capable of developing at least their actual yield stress, and 

secondly, specimens are capable of reaching deformation levels corresponding to limits beyond 

the first yield displacement [12]. 

Each data point in Figures 1-18 and 1-19 represents the displacement ductility ratio 

achieved by each of 48 test specimens. Based on the structural performance of the specimens 

compared to the calculated ductility ratio, it might be concluded that the specimens achieving a 

displacement ductility ratio of greater than 3 shall be considered satisfactory. Graybeal et al [25] 

conducted several tests for UHPC closure joints and the corresponding ductility was checked by 

the author herein, and it was estimated that the UHPC closure joint specimens reach a ductility 

ratio of 3 to 4. Since the UHPC closure joints have been implemented in practice in many bridges, 

with same ductility range. It can be concluded that performance of closure joints with 90° degree 

hooked reinforcement is satisfactory since it reaches the same ductility range as UHPC closure 

joints with straight bars. 

Results of the experimental tests are summarized in Table 1-5. Following is a suggested 

design recommendation for the closure joint detail recommended in this research. It should be 
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noted that until further tests are performed, this is a conservative recommendation, based on the 

results shown in Table 1-5 . 

For specimens with No. 4 and No. 6 reinforcement, using the 90° degree hook detail, as 

shown in Figure 16, lap splice length should be at least 12 times diameter of the reinforcement. 

Further, at least three No. 3 reinforcement, acting as confining reinforcement and running parallel 

to the closure joints, as shown in Figure 1-20 and should be provided over the spliced hooked 

reinforcement. In case of the absence of the transverse bars, lap splice length should be at least 14 

times diameter of the reinforcement. The maximum stagger spacing should be limited to 4 in. until 

further research is conducted. 

Table 1-5 Design Recommendations 
Bar Size Gap Space 

(in.) 
Without Transverse 

Bar 
With Transverse 

Bar 
#4 2 8db ( 4 in.) 8db ( 4 in.) 

#6 2 14db (10 in.) 8db (6 in.) 

#4 4 12db (6 in.) 8db ( 4 in.) 

#6 4 14db (10 in.) l ldb (8 in.) 

Hooked bar 
(No.4 and No.6) Transverse Reinforcement (No.3) 

Prefab.
'lJeated D 
p eek

aneJ 

-------------
Prefab .

'lJeated D 
Pane] eek 

Figure 1-20 Design recommendation details. 
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1.12 Conclusions 

The main objective ofthis research was to develop design provisions for 90° degree hooked 

reinforcement detail in closure joint regions. An experimental investigation was designed to 

develop information that could lead to design recommendations. The parameters investigated 

experimentally included reinforcement diameter, the lateral distance between reinforcement, 

transverse reinforcement, and lap splice length. Testing was carried out on a four-point setup and 

the results are reported in terms of load-deflection curves and ductility ratio . 

Based on the conducted research, the following specific conclusions are made: 

1. For the reinforcement types and 90° degree hook detail, AASHTO-LRFD ( ACI 318-11) 

Specification requires 18 times the diameter of the reinforcement as lap splice length, as 

compared to 12 times the diameter of the reinforcement recommended in this study. The 

main reason for this observed behavior is that AASHTO-LRFD and ACI design 

recommendations were developed based on test specimens simulating 90° degree hook 

detail in beam-column connections. In the case of deck slab, significant confinement for 

hooked detail is provided by concrete to either side of closure joints. This additional 

confinement helps to reduce the required tension splice length. 

2. The design recommendations in this research are based on providing sufficient ductility by 

including confining reinforcement, increasing in tension lap splice length, or decreasing 

the lateral distance between spliced reinforcement. The recommended design provisions 

ensure achieving acceptable levels of ductility before failure, which could be by either 

flexure or bond failures as the mode of failure is considered of secondary importance. 

3. Performance of closure joints with 90° degree hooked reinforcement is considered 

satisfactory as it reaches a ductility ratio of 3 to 4 range as compared to UHPC closure 

joints with straight bars. 
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	1.1 Abstract 
	1.1 Abstract 
	Several alternatives are used to connect prefabricated bridge deck elements using closure joints but cost and construction considerations limit their use in field applications. In this research, a new detail is proposed to efficiently connect these elements in closure joints. The new detail consists of 90° hooked reinforcement and normal strength concrete in the closure joint. An experimental program was conducted to develop design criteria for the suggested detail. 48 specimens were tested to study the eff

	1.2 Introduction 
	1.2 Introduction 
	A major portion of the bridge infrastructures in the United States is approaching their design life and consequently needs replacement or repair. Many of these bridges are located in crowded roadways, and closure of these bridges for an extended period of time is not feasible. In order to minimize traffic disruptions, the bridge can be temporarily closed while performing construction activities using accelerated bridge construction (ABC) techniques. Minimizing construction time and activities performed in t
	using cast-in-place closure joints. Since these modular sections have a pre-topped deck tributary 
	area, extensive forming and scaffolding are eliminated. 
	In modular bridge superstructure, the shear and moment are transferred through the longitudinal deck joints which run parallel to traffic direction. These joints are functionally required to connect one modular unit to the adjacent units, however, the performance of these joints can be affected by environmental attacks and structural degradations [1]. Durability issues have been encountered in these longitudinal joints with the use of welded steel connectors. In addition, cracking has been observed in bridg
	In order to control deck cracking, several researchers proposed usmg distributed reinforcement [3] . The use of closely spaced reinforcing bar provides better stress distribution when compared to widely spaced reinforcing bars [ 4] . In addition, it is desirable to keep the joint width smaller to reduce cost and construction time. However, this reduction in joint width prevents the straight and hooked bars from satisfying AASHTO-LRFD development length requirements [5]. Therefore, special details including 
	One ofthe disadvantages ofusing spiral wire is difficulty in its fabrication, which increases the cost of installation [3]. ForU-shaped bar, AASHTO-LRFD section 5.10.2 (ACI 7.1 and 7.2) outlines bend diameter which requires the deck to have a thickness greater than 9.5 in [5] , [6]. 
	However, this value is typically less than 8.5 in. and thus U-shaped detail cannot be used. On the 
	other hand, headed bars provide satisfactory structural performance but their limited availability, cost, and reduction in concrete cover at the bar head make them a less feasible option. 
	Figure 1-1 Details of current options for splicing reinforcement in closure joints [7]. 
	On the other hand, hooked bars offer benefits of easy fabrication and reasonable cost. In the past, many studies have been conducted on hooked bar anchorages in beam-column connections [8] ,[9] ,[10]. These studies were conducted on typical beam-column connections subjected to varying levels of confinement at the connections including side concrete cover, column axial load, longitudinal column reinforcement, and transverse reinforcement through the connection. The results showed spalling of concrete cover a
	The pullout tests in typical beam-column connections were carried out on hooked bars with different straight lead embedment lengths, h, and design recommendations of embedment length, ldh of bars were suggested based on these results [9]. Test results concluded that the main factors 
	affecting the capacity of beam-column connections are the level of lateral confinement and 
	embedment length [9]. Limitation values of ldh were provided based on test results in which the failure mode occurred by spalling of the concrete side cover. However, in the closure joint, the adjacent concrete provides large confinement to the hook and the spalling of concrete side cover rarely occurs. 
	Testing was conducted on hooked bar anchorages with short embedment length (ldh ~ 7db) and results showed that the failure mode occurred by the loss of concrete cover in front of the hook. This failure mode is different from typical pullout failure and side-splitting [10]. For the range of concrete strength considered, the capacity of hooked bar anchorage was proportional to 
	[10]. 
	m

	Many studies have been conducted on tension development length of reinforcing bars in high strength concrete [11] ,[12] ,[13] ,[14]. The results of these experimental studies showed that both tension splice length can be designed to prevent brittle failure ifa minimum amount ofstirrups are provided over the splice region [ 11]. This minimum amount ofstirrups can be calculated by an expression given in the literature [ 12] . The recommendations provided in ACI 318-95 for concrete strengths above 10,000 psi w
	Other recommendations include a 20% increase in ldh value for the anchorage strength in the case of epoxy coated hooked bars [ 15]. Also, based on a strut and tie model, recommendations were made on the development length of standard hook anchorage with high strength corrosion resistant reinforcement [ 16]. 
	A 90° hook in a reinforced concrete joint need to meet AASHTO-LRFD requirements. To develop a bar in concrete, the AASHTO-LRFD code specifies a length of tail extension of 12db 
	for a 90° hook [5]. Previous studies were used as bases for AASHTO-LRFD and ACI requirement 
	and have shown that the bend portion of the hooks can pop out when either short length of hook or smaller concrete cover are used [8] ,[9] ,[10]. However, this scenario is not common in closure joint regions where large confinement is provided by the adjacent concrete. 

	1.3 Objectives 
	1.3 Objectives 
	Although the hooked bars have been used extensively in different applications, their use in closure joints is limited due to lack of experimental data. The objective of this research is focused on studying a hooked detail in the closure joint region through experimentation. To understand the mechanism of development of 90° degree hooks, a detailed experimental program was conducted by incorporating different parameters such as bar size, lap splice length, the lateral distance between reinforcement, and tran
	The performance of the proposed 90° hooks meets structural requirements and can be practically implemented in field construction. 

	1.4 Current Details for Closure Joint 
	1.4 Current Details for Closure Joint 
	The use of girders with prefabricated deck panels is one of the most commonly used ABC methods for construction of bridge superstructure. These standalone prefabricated units are deployed on site and then connected to the other adjacent units using different closure joints. 
	One of the possible methods of connecting separate units is the use of straight lap bars in 
	closure joints. However, straight lap bars require wider closure joints to develop sufficient development length based on the AASHTO-LRFD design specifications [5]. The other issue with straight lap bars in wide closure joint is the shrinkage cracking. Alternatively, headed bars are used which are currently in practice for construction of modular bridge systems. NCHRP 12-69 recommends using of headed bars for easier construction practices [ 17]. Among the many shortcomings of headed bars which may cause ser
	Another common option to reduce the closure joint width is the use of Ultra-High Performance Concrete (UHPC) between the modular deck units. This material offers high compressive strength, high tensile strength compared to normal strength concrete, and low permeable solution to join the prefabricated elements. The higher tensile strength of this material makes it possible to provide adequate strength over short lap splice length [19]. However, the higher cost of this material compared to other available con
	Lastly, the 180° hooked bars provide detailing of closure joint, which are economical and constructible. The 180° hooked detail provides a solution to the concrete cover problem experienced with headed bars. However, this detail limits the designers to use the same reinforcement size for the top and bottom layers, which is in some cases not the situation for bridge decks [18]. Moreover, meeting the bent bar requirements as outlined in AASHTO-LRFD section 
	5.10.2 (Section 7.1 and Section 7.2 of the ACB 18-08) [5] ,[6] causes the deck thickness to be 
	greater than 9.5 in., which is a function of girder spacing which is typically less than 8.5 in. 
	To overcome the shortcomings of the existing details, a new connection detail is proposed in this research by using 90° hooked bars which overcome the concrete cover issue associated with head bars, deck thickness issue associated with 180° hooked bars, and the wide closure joint in case of the use of straight bars. The new detail should be designed for adequate structural performance and service life for ABC applications. 
	Figure 1-2 Details of headed bar splicing reinforcement in closure joints [7]. 

	1.5 Description of the Proposed ABC Connection 
	1.5 Description of the Proposed ABC Connection 
	In the proposed closure joint, normal strength concrete along with 90° degree hooked bar is used to connect the pre-topped deck elements in the ABC application. As a part of the research performed by the University of Tennessee, Knoxville a survey was sent to various bridge professionals to determine concerns with current bar details. The primary concerns were the overall width of the closure joint and constructability of each of the details [18] ,[20]. In order to reduce the closure joint width and to achi
	90° hooked bars in closure joint. The hooked bars may be obtained from any local steel fabricator 
	which greatly reducing the time and cost of fabrication and shipment to the work site. AASHTO specifies the face of closure joint to be roughened or have shear keys to ensure a proper bond and shear strength between segments [21 ],[22]. However, the worst-case scenario is when no surface preparation is conducted on adjacent segments which leads to a weaker shear interface due to face smoothness. Based on this assumption, details of the proposed specimens were designed using a smooth interface, as shown in F
	Hooked Bar Interface Precast 
	(#4 or #6) Segment 7A 
	8" 
	Lp #3 
	Figure
	L-B__J 
	Closure Joint Zone 

	L 



	4" ( R2" 
	4" ( R2" 
	r 
	Hooked Bar 
	Table
	TR
	(#4 or #6) 
	I 
	I 

	TR
	I 
	I 

	TR
	I 
	I 

	TR
	I 
	I I 

	':-,.. 
	':-,.. 
	I I 
	I I 

	TR
	I I 
	I 

	TR
	I 
	I 

	TR
	I 
	I 


	Figure
	L7 
	A-A 
	Figure 1-3 Details of hooked bar in the proposed connection (elevation view and section). 
	The main advantage of the new details includes a reduction in closure joint width. The main advantage of a narrower closure joint is the reduction in shrinkage cracking. The hooked bar can be developed within the deck thickness over a shorter length. Also, the hooked bars have a comparatively lower fabrication cost and their ease of construction saves time which agrees with the ABC goals. 
	1.6 Experimental Program 
	1.6 Experimental Program 
	To evaluate the structural performance ofthe proposed closure joint detail, an experimental program was conducted at Florida International University (FIU). Based on the test program, the experiments were conducted in three phases. Each phase was investigated for different parameters, 
	including lap splice (Lp) length, the lateral distance between hooked bars (Gap Space (GS)) and 
	the use of transverse bar (TR) (each variable is defined in Figure 1-3). In this detail, lap splice (Lp) was measured from outside to outside of hooked bars as shown in Figure 1-3 . To meet the requirement of the AASHTO-LRFD Bridge Design Specifications [22] for the confinement of hooks, the side cover is considered as 2 in. For each bar size, the range of Lp is incrementally varied from 2 in. to 10 in. with 2-in. increment. For bar size (BS), No. 4 and No. 6 are considered which are commonly used in bridge
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	Elevation View Figure 1-4 Specimen geometry, reinforcement, and reversed test setup. 
	During the first phase, hereafter, indicated by Group A, 12 test specimens were constructed with different lap splices (2 in. ~ Lp ~ 10 in.) with 2-in. increment. The bar sizes for lap splice were No. 4 and No. 6 with a constant gap space of 2 in. In the second phase, hereafter, indicated by Group B, another 12 specimens were constructed with the details identical to Group A, except 
	for a gap of4-in. between the longitudinal hooked bar in the closure joints region. Finally, Groups C and D test specimens were constructed with details identical to Groups A and B, with additional transverse reinforcement which is not used in Groups A and B. These transverse bars consisting of No. 3 bars at a spacing of 2.5 in. were placed over the hooked bars in the closure joint. This transverse reinforcement represents longitudinal reinforcement that is usually placed in the longitudinal closure joints.
	ST is a notation for the specimens with transverse bars in closure region; 
	GS is a notation for the lateral distance between the hooked bars (Gap Space) in inches; 
	BS is a notation for bar size in terms ofbar number; and 
	Lp is a notation for lap splice length in inches. For instance, S-2-4-2 specifies the specimen with no transverse reinforcement within closure joint, with a 2-in. lateral distance between the hooked bars, No. 4 bar size, and 2-in. lap splice length. Table 1-1 shows the specimen matrix details. 
	Table 1-1 Specimen Matrix, Unit: in. 
	Table 1-1 Specimen Matrix, Unit: in. 
	Table 1-1 Specimen Matrix, Unit: in. 

	Group 
	Group 
	ID 
	GS (in.) 
	Bar Size 
	Lp (in.) 
	Transverse Bar 
	Joint Width (in.) 

	A 
	A 
	S-2-4-2 
	2 
	#4 
	2 
	NO 
	6 

	S-2-4-4 
	S-2-4-4 
	2 
	#4 
	4 
	NO 
	8 

	S-2-4-6 
	S-2-4-6 
	2 
	#4 
	6 
	NO 
	10 

	S-2-4-8 
	S-2-4-8 
	2 
	#4 
	8 
	NO 
	12 

	S-2-4-10 
	S-2-4-10 
	2 
	#4 
	10 
	NO 
	14 

	S-2-6-2 
	S-2-6-2 
	2 
	#6 
	2 
	NO 
	6 

	S-2-6-4 
	S-2-6-4 
	2 
	#6 
	4 
	NO 
	8 

	S-2-6-6 
	S-2-6-6 
	2 
	#6 
	6 
	NO 
	10 

	S-2-6-8 
	S-2-6-8 
	2 
	#6 
	8 
	NO 
	12 

	S-2-6-10 
	S-2-6-10 
	2 
	#6 
	10 
	NO 
	14 

	S-2-4-control 
	S-2-4-control 
	2 
	#4 
	Control 
	NO 
	NIA 

	S-2-6-control 
	S-2-6-control 
	2 
	#6 
	Control 
	NO 
	NIA 


	Cont. Table 1-1 
	B 
	B 
	B 
	S-4-4-2 
	4 
	#4 
	2 
	NO 
	6 

	S-4-4-4 
	S-4-4-4 
	4 
	#4 
	4 
	NO 
	8 

	S-4-4-6 
	S-4-4-6 
	4 
	#4 
	6 
	NO 
	10 

	S-4-4-8 
	S-4-4-8 
	4 
	#4 
	8 
	NO 
	12 

	S-4-4-10 
	S-4-4-10 
	4 
	#4 
	10 
	NO 
	14 

	S-4-6-2 
	S-4-6-2 
	4 
	#6 
	2 
	NO 
	6 

	S-4-6-4 
	S-4-6-4 
	4 
	#6 
	4 
	NO 
	8 

	S-4-6-6 
	S-4-6-6 
	4 
	#6 
	6 
	NO 
	10 

	S-4-6-8 
	S-4-6-8 
	4 
	#6 
	8 
	NO 
	12 

	S-4-6-10 
	S-4-6-10 
	4 
	#6 
	10 
	NO 
	14 

	S-4-4-control 
	S-4-4-control 
	4 
	#4 
	Control 
	NO 
	NIA 

	S-4-6-control 
	S-4-6-control 
	4 
	#6 
	Control 
	NO 
	NIA 

	C 
	C 
	ST-2-4-2 
	2 
	#4 
	2 
	#3 
	6 

	ST-2-4-4 
	ST-2-4-4 
	2 
	#4 
	4 
	#3 
	8 

	ST-2-4-6 
	ST-2-4-6 
	2 
	#4 
	6 
	#3 
	10 

	ST-2-4-8 
	ST-2-4-8 
	2 
	#4 
	8 
	#3 
	12 

	ST-2-4-10 
	ST-2-4-10 
	2 
	#4 
	10 
	#3 
	14 

	ST-2-6-2 
	ST-2-6-2 
	2 
	#6 
	2 
	#3 
	6 

	ST-2-6-4 
	ST-2-6-4 
	2 
	#6 
	4 
	#3 
	8 

	ST-2-6-6 
	ST-2-6-6 
	2 
	#6 
	6 
	#3 
	10 

	ST-2-6-8 
	ST-2-6-8 
	2 
	#6 
	8 
	#3 
	12 

	ST-2-6-10 
	ST-2-6-10 
	2 
	#6 
	10 
	#3 
	14 

	ST-2-4-control 
	ST-2-4-control 
	2 
	#4 
	Control 
	#3 
	NIA 

	ST-2-6-control 
	ST-2-6-control 
	2 
	#6 
	Control 
	#3 
	NIA 

	D 
	D 
	ST-4-4-2 
	4 
	#4 
	2 
	#3 
	6 

	ST-4-4-4 
	ST-4-4-4 
	4 
	#4 
	4 
	#3 
	8 

	ST-4-4-6 
	ST-4-4-6 
	4 
	#4 
	6 
	#3 
	10 

	ST-4-4-8 
	ST-4-4-8 
	4 
	#4 
	8 
	#3 
	12 

	ST-4-4-10 
	ST-4-4-10 
	4 
	#4 
	10 
	#3 
	14 

	ST-4-6-2 
	ST-4-6-2 
	4 
	#6 
	2 
	#3 
	6 

	ST-4-6-4 
	ST-4-6-4 
	4 
	#6 
	4 
	#3 
	8 

	ST-4-6-6 
	ST-4-6-6 
	4 
	#6 
	6 
	#3 
	10 

	ST-4-6-8 
	ST-4-6-8 
	4 
	#6 
	8 
	#3 
	12 

	ST-4-6-10 
	ST-4-6-10 
	4 
	#6 
	10 
	#3 
	14 

	ST-4-4-control 
	ST-4-4-control 
	4 
	#4 
	Control 
	#3 
	NIA 

	ST-4-6-control 
	ST-4-6-control 
	4 
	#6 
	Control 
	#3 
	NIA 



	1.7 Construction of Test Specimens 
	1.7 Construction of Test Specimens 
	The structural performance of a closure joint was replicated under a flexure test for a unit width. The closure joint was cast in two stages. During the first stage, the adjoining decks were cast in a formwork separated by a closure joint. Upon the completion of curing for a minimum of 28 days, the closure joint was cast. The concrete used for both the slab and closure joint had a 
	compressive strength of a minimum of 5 ksi (FDOT CL II deck concrete). Before casting of the 
	closure joints, no surface preparation was done on cast deck portion. This condition represents the most unfavorable condition of a cold joint. In addition to the test group specimens, control specimens of monolithic construction were made. These control specimens replicate the cast-inplace slab of conventional bridges that have no closure joints and contain straight bars. The test specimens were painted in white to document crack initiation and propagation during the test. Construction procedure oftest spe
	-

	Figure 1-5 Specimen construction procedure a) formwork, b) casting deck portions, c) spliced hooked bars in closure joint, d) casting closure joint, e) final test setup. 

	1.8 Test Setup and Loading Procedure 
	1.8 Test Setup and Loading Procedure 
	The test specimens were tested under a four-point loading setup as the main scope of this study is to investigate the flexural behavior and lap splice length requirement. A displacement controlled monotonic loading was applied to determine the moment capacity ofthe closure joints. The distance between the hydraulic jacks was 6 ft. and the roller supports were spaced at 3 ft. apart 
	as shown in Figure 1-6 (actual test setup) and Figure 1-7 (schematic test setup). The hydraulic 
	jacks were reacted against a spreader beam, which was anchored to the lab strong floor. To evaluate the behavior of the specimens, the test setup was instrumented with string potentiometers, load cells, and pressure transducers. Each specimen was loaded to failure. The deflection was measured at the mid of the slab and loading points. 
	Figure
	Figure 1-6 Actual experimental test setup. 
	Figure 1-6 Actual experimental test setup. 


	+-------6' ------+ ---3' ---8" I 
	--------8' ___________. Figure 1-7 Schematic experimental test setup. 

	1.9 Material Tests 
	1.9 Material Tests 
	Cylinder test of 4x8 m. based on ASTM C39/C39M [24] specification was used to determine the compressive strength of normal concrete at test days as shown in Figure 1-8. The compressive strength of conventional concrete for the slab and closure joint regions are summarized in Table 1-2. All compressive strength values passed 5,000 psi as required. 
	ASTM A615 Grade 60, No. 3, No. 4, and No. 6 steel reinforcing bars were used for longitudinal reinforcement in all specimens and transverse bars for specimens in groups C and D. Four segments of each bar were used for tensile testing as shown in Figure 1-9. The resulting values of yield and ultimate strength are mentioned in Error! Reference source not found.1-3. 
	Table 1-2 Compressive Strength of Outer Sections of Slab Specimens 
	Region 
	Region 
	Region 
	Sample # 
	Compressive Strength (psi) 

	Slab 
	Slab 
	1 
	7744 

	TR
	2 
	6230 

	TR
	3 
	7794 

	TR
	4 
	7189 

	TR
	5 
	6080 

	TR
	6 
	6974 

	TR
	7 
	6852 

	TR
	8 
	6021 

	TR
	Average 
	6860 

	Closure joint 
	Closure joint 
	1 
	6692 

	TR
	2 
	6273 

	TR
	3 
	6130 

	TR
	4 
	6127 

	TR
	5 
	6772 

	TR
	6 
	6525 

	TR
	Average 
	6420 


	Table 1-3 Bar Test Strengths 
	Test Specimen Yield Strength (psi) Ultimate Strength (psi) 
	Straight/Hooked No. 4 
	Straight/Hooked No. 4 
	Straight/Hooked No. 4 
	64,500 
	103,800 

	Straight/Hooked No. 6 
	Straight/Hooked No. 6 
	68,000 
	113,000 

	Straight No. 3 
	Straight No. 3 
	61,700 
	100,100 


	Figure 1-8 Cylinder test. 
	Figure 1-9 Reinforcing bar test. 

	1.10 Experimental Result 
	1.10 Experimental Result 
	1.10.1 Mode of Failure and Crack Pattern 
	1.10.1 Mode of Failure and Crack Pattern 
	Resistance against pull-out of deformed reinforcing bars embedded in concrete is mainly provided by bearing of ribs against concrete. Although adhesion and friction are present when a deformed bar is loaded, these bond-transfer mechanisms are quickly lost, leaving the bond to be transferred by bearing on the deformations of the bar [12]. For most structural members, bond failure is governed by concrete splitting. 
	The mode offailure for a closure joint with an inadequate splice length occurs at the closure joint region. by increasing the applied load, the force is transferred to the closure joint and concrete splits before the yielding occurs due to insufficient lap splice length, which is referred to as a bond failure as shown in Figure 1-10. However, for the flexure failure, the spliced bars reach their yielding, and the subsequent cracks are distributed along the tension zone. The flexure failure is a preferred mo
	1-4. 
	Figure 1-10 Bond failure. 
	Figure 1-10 Bond failure. 
	Figure 1-11 Flexure failure. 

	The specimens with No. 4 bar in Group A failed in flexure with the exception of the specimen with 2-in. lap splice length which is not surprising due to short lap splice length of only four times bars diameter for bar No. 4. 
	For specimens with No. 6 in Group A, all failure modes were bond failure except for specimen with 10-in. lap splice length. This concluded that even eleven times the bar diameter of No. 6 is not sufficient to yield the spliced No. 6 bars. The specimens in Group B with No. 4 bars failed in flexure except 2-in. and 4-in. splice length. Since the only difference between Group A and Group B that specimens in Group B have bigger lateral distance between reinforcement which led to the need of at least twelve time
	For specimens with No. 6 bars in Group B failed in bond which concluded that increasing the lateral distance between the spliced bars caused that lap splice length to be insufficient even with over 13 times the bar size. 
	The specimens with No. 4 bars in Group C failed in bond failure mode except 8-in. and 10in. splice length. For specimens with No. 6 bars in the same group, all specimens failed in bond failure mode except for specimens with 8 in and 10 in. splice length. The specimens with No. 4 in 
	The specimens with No. 4 bars in Group C failed in bond failure mode except 8-in. and 10in. splice length. For specimens with No. 6 bars in the same group, all specimens failed in bond failure mode except for specimens with 8 in and 10 in. splice length. The specimens with No. 4 in 
	-

	Group D bars failed in bond except 10-in. splice length. For specimens with No. 6 bars in the same group, all specimens failed in bond. The reason Groups C and D failed in bond was due to a weak plane caused by the presence of transverse bars. The modes of failure for all test specimens are summarized in Table 1-4. 

	Table 1-4 Test Specimens Modes of Failure 
	Table 1-4 Test Specimens Modes of Failure 
	Table 1-4 Test Specimens Modes of Failure 

	Group 
	Group 
	ID 
	Bar Size 
	GS (in.) 
	Lv (in.) 
	Transverse Bar 
	Mode of Failure 

	A 
	A 
	S-2-4-2 
	#4 
	2 
	2 
	NO 
	Bond Failure 

	S-2-4-4 
	S-2-4-4 
	#4 
	2 
	4 
	NO 
	Flexural Failure 

	S-2-4-6 
	S-2-4-6 
	#4 
	2 
	6 
	NO 
	Flexural Failure 

	S-2-4-8 
	S-2-4-8 
	#4 
	2 
	8 
	NO 
	Flexural Failure 

	S-2-4-lO 
	S-2-4-lO 
	#4 
	2 
	lO 
	NO 
	Flexural Failure 

	S-2-4-control 
	S-2-4-control 
	#4 
	NIA 
	NIA 
	NO 
	Flexural Failure 

	S-2-6-2 
	S-2-6-2 
	#6 
	2 
	2 
	NO 
	Bond Failure 

	S-2-6-4 
	S-2-6-4 
	#6 
	2 
	4 
	NO 
	Bond Failure 

	S-2-6-6 
	S-2-6-6 
	#6 
	2 
	6 
	NO 
	Bond Failure 

	S-2-6-8 
	S-2-6-8 
	#6 
	2 
	8 
	NO 
	Bond Failure 

	S-2-6-10 
	S-2-6-10 
	#6 
	2 
	lO 
	NO 
	Flexural Failure 

	S-2-6-control 
	S-2-6-control 
	#6 
	NIA 
	NIA 
	NO 
	Flexural Failure 

	B 
	B 
	S-4-4-2 
	#4 
	4 
	2 
	NO 
	Bond Failure 

	S-4-4-4 
	S-4-4-4 
	#4 
	4 
	4 
	NO 
	Bond Failure 

	S-4-4-6 
	S-4-4-6 
	#4 
	4 
	6 
	NO 
	Flexural Failure 

	S-4-4-8 
	S-4-4-8 
	#4 
	4 
	8 
	NO 
	Flexural Failure 

	S-4-4-lO 
	S-4-4-lO 
	#4 
	4 
	lO 
	NO 
	Flexural Failure 

	S-4-4-control 
	S-4-4-control 
	#4 
	NIA 
	NIA 
	NO 
	Flexural Failure 

	S-4-6-2 
	S-4-6-2 
	#6 
	4 
	2 
	NO 
	Bond Failure 

	S-4-6-4 
	S-4-6-4 
	#6 
	4 
	4 
	NO 
	Bond Failure 

	S-4-6-6 
	S-4-6-6 
	#6 
	4 
	6 
	NO 
	Bond Failure 

	S-4-6-8 
	S-4-6-8 
	#6 
	4 
	8 
	NO 
	Bond Failure 

	S-4-6-lO 
	S-4-6-lO 
	#6 
	4 
	lO 
	NO 
	Bond Failure 

	S-4-6-contro l 
	S-4-6-contro l 
	#6 
	NIA 
	NIA 
	NO 
	Flexural Failure 

	C 
	C 
	ST-2-4-2 
	#4 
	2 
	2 
	#3 
	Bond Failure 

	ST-2-4-4 
	ST-2-4-4 
	#4 
	2 
	4 
	#3 
	Bond Failure 

	ST-2-4-6 
	ST-2-4-6 
	#4 
	2 
	6 
	#3 
	Bond Failure 

	ST-2-4-8 
	ST-2-4-8 
	#4 
	2 
	8 
	#3 
	Flexural Failure 

	ST-2-4-lO 
	ST-2-4-lO 
	#4 
	2 
	lO 
	#3 
	Flexural Failure 

	ST-2-4-control 
	ST-2-4-control 
	#4 
	NIA 
	NIA 
	#3 
	Flexural Failure 

	ST-2-6-2 
	ST-2-6-2 
	#6 
	2 
	2 
	#3 
	Bond Failure 

	ST-2-6-4 
	ST-2-6-4 
	#6 
	2 
	4 
	#3 
	Bond Failure 

	ST-2-6-6 
	ST-2-6-6 
	#6 
	2 
	6 
	#3 
	Bond Failure 

	ST-2-6-8 
	ST-2-6-8 
	#6 
	2 
	8 
	#3 
	Flexural Failure 

	ST-2-6-lO 
	ST-2-6-lO 
	#6 
	2 
	lO 
	#3 
	Flexural Failure 

	ST-2-6-control 
	ST-2-6-control 
	#6 
	NIA 
	NIA 
	#3 
	Flexural Failure 


	Cont. Table 4-1 
	D 
	D 
	D 
	ST-4-4-2 
	#4 
	4 
	2 
	#3 
	Bond Failure 

	ST-4-4-4 
	ST-4-4-4 
	#4 
	4 
	4 
	#3 
	Bond Failure 

	ST-4-4-6 
	ST-4-4-6 
	#4 
	4 
	6 
	#3 
	Bond Failure 

	ST-4-4-8 
	ST-4-4-8 
	#4 
	4 
	8 
	#3 
	Bond Failure 

	ST-4-4-10 
	ST-4-4-10 
	#4 
	4 
	10 
	#3 
	Flexural Failure 

	ST-4-4-control 
	ST-4-4-control 
	#4 
	NIA 
	NIA 
	#3 
	Flexural Failure 

	ST-4-6-2 
	ST-4-6-2 
	#6 
	4 
	2 
	#3 
	Bond Failure 

	ST-4-6-4 
	ST-4-6-4 
	#6 
	4 
	4 
	#3 
	Bond Failure 

	ST-4-6-6 
	ST-4-6-6 
	#6 
	4 
	6 
	#3 
	Bond Failure 

	ST-4-6-8 
	ST-4-6-8 
	#6 
	4 
	8 
	#3 
	Bond Failure 

	ST-4-6-10 
	ST-4-6-10 
	#6 
	4 
	10 
	#3 
	Bond Failure 

	ST-4-6-control 
	ST-4-6-control 
	#6 
	NIA 
	NIA 
	#3 
	Flexural Failure 


	Cracks were mapped during the tests on each specimen to observe the order of cracks formation. At the onset of longitudinal crack formation, the tests were stopped for safety concerns. All remaining cracks were mapped upon the completion of testing, as shown in Figure 1-12. Initiation of cracks with bond failure mode occurred at the cold joints and subsequent crack formation occurred over supports. 
	Figure
	Figure 1-1 2 Cracking pattern in closure joints region. 
	Figure 1-1 2 Cracking pattern in closure joints region. 



	1.10.2 Load-Displacement Relationship 
	1.10.2 Load-Displacement Relationship 
	The comparisons of load-deflection curves for all groups are plotted from Figure 1-13 to Figure 1-16 with fixed horizontal and vertical axes. The test results show that the variables such 
	The comparisons of load-deflection curves for all groups are plotted from Figure 1-13 to Figure 1-16 with fixed horizontal and vertical axes. The test results show that the variables such 
	as the bar diameter, the lateral distance between reinforcement, and lap splice length have a significant influence on the load carrying capacity of specimens. 

	In Group A, the deflection specimen with No. 4 bar increased with an increase of lap spliced length, while the maximum load carrying capacity of specimens remained the same which is due to better development length which led to better load transfer between the two adjacent deck segments. The test specimen S-2-4-2 exhibited the least displacement before the occurrence of bond failure. For lap splice increments from 2 to 8 in., No. 6 bar was insufficient for tension development length and bond failure occurre
	The lateral distance between the reinforcement (Gap Space) for specimens in Group B with No. 4 and No. 6 bars was increased from 2 in. to 4 in. The results show that increasing this gap space requires an increase of lap splice length, which is shown in Figure 1-14-a and Figure 1-14
	-

	b. The 4-in. gap space for specimens with No. 6 bars was insufficient for all splice lengths and failed in bond. Figures 1-13 and 1-14 show that reducing the gap spacing and increasing the bar diameter can improve the ultimate load capacity of the specimens due to an increase in reinforcement ratio. 
	Groups C and D have test parameters similar to Groups A and B but include transverse reinforcement in closure joint region. The test results of Groups C and D are presented in Figures 1-15 and 1-16. General design practice requires the use of these transverse bars for thermal and shrinkage requirements. 
	In Group C, the deflection specimen with No. 4 bar increased with an increase oflap spliced length, while the maximum load carrying capacity of specimens remained the same which is due to better development length which led to better load transfer between the two adjacent deck 
	segments. The test specimens ST-2-4-2 and ST-2-4-4 exhibited the least displacement before the 
	occurrence ofbond failure. For lap splice increments from 2 to 6 in., No. 6 bar was insufficient for tension development length and bond failure occurred in these specimens. However, for lap splice lengths of 8-in. and 10-in., the failure mode was in flexural. Figure 1-15-b shows that the specimens with No. 6 bars with insufficient lap splice length failed before the bar yielding occurred. 
	The lateral distance between the reinforcement (Gap Space) for specimens in Group D with No. 4 and No. 6 bars was increased from 2 in. to 4 in. The results show that increasing this gap space requires an increase of lap splice length, which is shown in Figure 1-16-a and Figure 1-16
	-

	b. The 4-in. gap space for specimens with No. 6 bars was insufficient for all splice lengths and failed in bond. Figures 1-15 and 1-16 show that reducing the gap spacing and increasing the bar diameter can improve the ultimate load capacity of the specimens due to an increase in reinforcement ratio. Adding transverse reinforcement in the closure joints acts as ties for spliced bars ( due to their short length) to reduce cracks initiation and propagation, however, specimens in groups C and D failed in bond s
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	Figure 1-13 Group A, Experimental load-displacement result a) Specimens with No. 4 bars and 2-in. gap, b) Specimens with No. 6 bars and 2-in. gap. 
	Figure 1-13 Group A, Experimental load-displacement result a) Specimens with No. 4 bars and 2-in. gap, b) Specimens with No. 6 bars and 2-in. gap. 
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	Figure 1-14 Group B, Experimental load-displacement result a) Specimens with No. 4 bars and 4-in. gap, b) Specimens with No. 6 bars and 4-in. gap. 
	Figure 1-14 Group B, Experimental load-displacement result a) Specimens with No. 4 bars and 4-in. gap, b) Specimens with No. 6 bars and 4-in. gap. 
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	Figure 1-15 Group C, Experimental load-displacement result a) Specimens with No. 4 bars and 2-in. gap, b) Specimens with No. 6 bars and 2-in. gap. 
	Figure 1-15 Group C, Experimental load-displacement result a) Specimens with No. 4 bars and 2-in. gap, b) Specimens with No. 6 bars and 2-in. gap. 
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	Figure 1-16 Group D, Experimental load-displacement result a) Specimens with No. 4 bars and 4-in. gap, b) Specimens with No. 6 bars and 4-in. gap. 
	Figure 1-16 Group D, Experimental load-displacement result a) Specimens with No. 4 bars and 4-in. gap, b) Specimens with No. 6 bars and 4-in. gap. 



	1.10.3 Measured Ductility 
	1.10.3 Measured Ductility 
	Since the behavior of the concrete beams is not perfectly elastic-plastic, the ductility parameters (~y and ~max) were obtained from the idealization load-displacement curve. The idealized curve consists oftwo regions: linear elastic and plastic. The yield displacement (~y) was calculated based on initial stiffness and maximum load applied as shown in Figure 1-17. Displacement ductility capacity (µ) of a member cab be calculated using the following equation: 
	Llmax (1-1) 
	µ=--
	Lly Where; ~y: Idealized elastic displacement of the tested beam ~max: the maximum displacement of the tested beam 
	Considering the described equation above, the ductility of the specimens related to lap splice length is plotted in Figures 1-18 and 1-19. The presence of transverse reinforcement in closure joint improves displacement ductility and the tension development is possible with shorter spliced length. Based on the test results, it is concluded that a certain level ofdisplacement ductility and load carrying capacity is needed for bar development length. These limits control the design oflap splice length for hook
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	Figure 1-17 Measuring ductility approach. 
	Figure 1-17 Measuring ductility approach. 
	Figure 1-17 Measuring ductility approach. 
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	Figure 1-18 Ductility against different lap splice length a) Specimens with No. 4 bars and 2-in. gap, b) Specimens with No. 6 bars and 2-in. gap. 
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	Figure 1-19 Ductility against different lap splice length a) Specimens with No. 4 bars and 4-in. gap, b) Specimens with No. 6 bars and 4-in. gap 
	Figure 1-19 Ductility against different lap splice length a) Specimens with No. 4 bars and 4-in. gap, b) Specimens with No. 6 bars and 4-in. gap 
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	1.11 Tentative Design Recommendations 
	1.11 Tentative Design Recommendations 
	The performance of a tension splice is considered similar to that of an identical component in which the reinforcing bars are continuous. Thus, to comply with general ACI design philosophy due to the lack of the same requirement in AASHTO-LRFD, the members with tension splice should exhibit some level of ductility. The ACI requirement specifying 1.25fy (section 12.14) provides insufficient knowledge of the level of ductility ( curvature of displacement) in a member with tension splice. Therefore, in order t
	Each data point in Figures 1-18 and 1-19 represents the displacement ductility ratio achieved by each of 48 test specimens. Based on the structural performance of the specimens compared to the calculated ductility ratio, it might be concluded that the specimens achieving a displacement ductility ratio of greater than 3 shall be considered satisfactory. Graybeal et al [25] conducted several tests for UHPC closure joints and the corresponding ductility was checked by the author herein, and it was estimated th
	Results of the experimental tests are summarized in Table 1-5. Following is a suggested design recommendation for the closure joint detail recommended in this research. It should be 
	noted that until further tests are performed, this is a conservative recommendation, based on the 
	results shown in Table 1-5 . 
	For specimens with No. 4 and No. 6 reinforcement, using the 90° degree hook detail, as shown in Figure 16, lap splice length should be at least 12 times diameter of the reinforcement. Further, at least three No. 3 reinforcement, acting as confining reinforcement and running parallel to the closure joints, as shown in Figure 1-20 and should be provided over the spliced hooked reinforcement. In case of the absence of the transverse bars, lap splice length should be at least 14 times diameter of the reinforcem
	Table 1-5 Design Recommendations 
	Table 1-5 Design Recommendations 
	Table 1-5 Design Recommendations 

	Bar Size 
	Bar Size 
	Gap Space (in.) 
	Without Transverse Bar 
	With Transverse Bar 

	#4 
	#4 
	2 
	8db ( 4 in.) 
	8db ( 4 in.) 

	#6 
	#6 
	2 
	14db (10 in.) 
	8db (6 in.) 

	#4 
	#4 
	4 
	12db (6 in.) 
	8db ( 4 in.) 

	#6 
	#6 
	4 
	14db (10 in.) 
	l ldb (8 in.) 


	Hooked bar Transverse Reinforcement (No.3) 
	(No.4 and No.6) 

	Prefab.'lJeated D p eekaneJ -------------Prefab .'lJeated D Pane] eek 
	Figure 1-20 Design recommendation details. 
	Figure 1-20 Design recommendation details. 



	1.12 Conclusions 
	1.12 Conclusions 
	The main objective ofthis research was to develop design provisions for 90° degree hooked reinforcement detail in closure joint regions. An experimental investigation was designed to develop information that could lead to design recommendations. The parameters investigated experimentally included reinforcement diameter, the lateral distance between reinforcement, transverse reinforcement, and lap splice length. Testing was carried out on a four-point setup and the results are reported in terms of load-defle
	1. 
	1. 
	1. 
	For the reinforcement types and 90° degree hook detail, AASHTO-LRFD ( ACI 318-11) Specification requires 18 times the diameter of the reinforcement as lap splice length, as compared to 12 times the diameter of the reinforcement recommended in this study. The main reason for this observed behavior is that AASHTO-LRFD and ACI design recommendations were developed based on test specimens simulating 90° degree hook detail in beam-column connections. In the case of deck slab, significant confinement for hooked d

	2. 
	2. 
	The design recommendations in this research are based on providing sufficient ductility by including confining reinforcement, increasing in tension lap splice length, or decreasing the lateral distance between spliced reinforcement. The recommended design provisions ensure achieving acceptable levels of ductility before failure, which could be by either flexure or bond failures as the mode of failure is considered of secondary importance. 

	3. 
	3. 
	Performance of closure joints with 90° degree hooked reinforcement is considered satisfactory as it reaches a ductility ratio of 3 to 4 range as compared to UHPC closure joints with straight bars. 
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